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Abstract.

In this paper, first we introduce generalized @ —weak contraction condition that involves quadratic
terms of distance function & (x, ¢)and proved common fixed point theorems using weakly compatible
for six self mappings. At the last we give corollaries and example in support of our theorem.
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1. Introduction

The Banach fixed point theorem is a fundamental method for studying fixed point theory,
demonstrating the presence and uniqueness of a fixed point under some conditions. This theorem
establishes a method for resolving a wide range of applied problems in mathematics and engineering.
The majority of applied mathematics problems reduce to inequality, whose solutions give rise to the f
ixed point. It was the huge change of the fixed point theory literature when commutativity mappings
was used by Jungck [3] to obtain a generalization of Banach’s fixed point theorem for a pair of
mappings. The first ever attempt to relax the commutativity to weak commutativity was initiated by
Sessa [9]. Further, in 1986 Jungck [4] introduced more generalized commutativity, so called
compatibility. One can notice that the notion of weak commutativity is a point property, while the
notion of compatibility is an iterate of sequence.

2. Preliminaries
Banach fixed point theorem states that every contraction mapping on a complete metric space has a
unique fixed point.

Let (A, &) be a complete metric space. If A: A - A satisfies d(A(x), A(y)) <
/a(d(x, y)), forall x,4 € U, 0 < £ < 1, then it has a unique fixed point.

In 1969, Boyd and Wong [2] replaced the constant £ in Banach contraction principle by a
control function v as follows:

Let (2, 4) be a complete metric space and ¥: [0, ) — [0, o) be upper semi continuous from
the right such that 0 < ¢ (¢) < t forall £ > 0.

If A: A - Wsatisfies d(A(x), A(y)) < P(d(x,¢)) forall x,y € U, then it has a unique
fixed point.
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In 1997, Alber and Gueree-Delabriere [1] introduced the concept of weak contraction as
follows:

A mapA : A — AUis said to be weak contraction if for each x,» € there exists a function @
: [0, o) — [0, ), @ (£) >0 for all # > 0 and @ (0) = 0 such that
Several fixed point theorems and common fixed point theorems have proved in the fixed point theory
literature usingweak contraction as an implicit function.

In 1996, Jungck [6] introduced the notion of weakly compatible mappings and showed that
compatible maps are weakly compatible, but converse may not be true.
Definition 2.1[6] Two self-mappings A and B on a metric space (U, 4)are called weakly compatible
if they commute at their coincidence point i.e.,if A« = Bu, for some « € A then ABu = BAw.

2. Main Result

In 2013, Murthy and Prasad [8] proposed a new form of inequality for a map involving cubic terms
of the metric function d(x,4), which expanded and generalized the results of Alber and Gueree-
Delabriere [1] and many others cited in the fixed point theory literature.
In 2013, Murthy and Prasad [8] proved the following result
Theorem 2.2.1 Let " be a map of a complete metric space(2l, &) into itself satisfying the following:

(1 [ d*(x, Tx)d(y, Ty)
) 2l+d(x, Tx)ad?(y, Ty)l’
[1+ Ad(x,y4)]|d*(Tx,Ty) < A max id(x' Ty (x, Ty)d(y, Tx),f
ad(x, Ty)d(y, Tx)d(y, Ty)
+m(xr /y‘) - ®(m(x' /y‘))a
( d?(x,y), )
| dxTx)d(y,Ty), |
where  m(x,y) = max{ ad(x,Ty)d(y, Tx), ,
[1[d(x, Tx)d(x,Ty) +]|
2| d(y, Tx)d(y,Ty) ]}
# = 0 is a real number and @: [0, ©) — [0, ©) is a continuous function with @ (¢) =0 &£ =0 and
@(t) > 0 for each £ > 0.Then T has a unique fixed point in2L.
The result of Murthy and Prasad [8] for a pair of weakly compatible mappings satisfying @ —weak
contractive condition is extended and generalized in this section involving various combinations of
metric functions in six self mappings.
Theorem 2.1 Let A,B,S,T,P and Q be six self-mappings of metric space (U, d) satisfying the
following conditions:
(G) P S sTA), QW S AB),
(C,)AB = BA,ST =TS8,PB =BP,QT =T9Q,
(C3) Oneof ST(A),Q(A), AB(A)orP (A)is complete,
(C4) The pairs (P, AB) and (Q,ST) are weakly compatible,
(Cs) [1 + Ad(ABx,STy)]d?*(Px, Qy)

1[ d?(ABx, Px)d(STy, Qy)
2|+a%(8Ty, Qy)d(ABx, Px)l’
A(ABx, Px)A(ABx, Qu)d(Px,STy),
a(ABx, Qy)d(Px,8Ty)A(STy, Qy)

d?(ABx,STy),
A(ABx,Px)d(STy,Qy),
whereo (ABx, STy) = max Ad(ABx, Qu)d(Px,8Ty), ¢
1[d(ABx, Px)d(ABx, Qy)
2 [+d(SPx, STy)Ad(STy, Qu)
forall x,4 € A, A = 0 is areal number and @: [0, ©) — [0, ) is a continuous function with

< /A max

+ 0 (ABx, STy) — ®{o (ABx, STy)},
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@(t) =0t =0 and @(¢) > t,for each £ > 0.Then A, B,S,T,P and Qhave a unique common
fixed point in 2L.

Proof.Let x, € U be an arbitrary point. From (C;) we can find a point x; and x, such that
P(x9) = 8T (x1) and Q(x1) = AB(x7).
Inductively, we can construct sequences {x,,} and {¢,} in & such that
Yon = P(x2) = 8T (x2541) and
Yons1 = QXons1) = AB(x2p42), foreachn = 0.(2.1)
For brevity, we write 75, = d(42n, Y2n+1)
First, we prove that{s+,} is non-increasing sequence and converges to zero.
Case | If nis even, puttingx = x,, and ¢ = x,,,1 In (Cs), we get

[1 + Ad(ABx2n, ST X2n41)]1d* (Pxon, Q%50 11)

1[ A? (ABxyn, P22n)A(ST %3041, Q%2m41)
< A max 21+d? (ST %311, Q%2 41) A(ABx gy, Pon)1 }_l_
B A(ABx o, Pxon)A(ABXop, QX201 1) A(PXon, ST Xon41),
A(ABx2n, Q%20 41)A(PX2p, ST %2541)A(ST X211, Q%2m41)

0 (ABx2n, ST x2n11) — O{o(ABx2n, ST %2011}

( A*(ABx3n, ST X3 11),

! A(ABx2n, Pxon)A(ST X2n11, Q%2n41),
whereo (ABxyp, ST Xop4q) = max A(ABxop, QXopns1)A(P X9y, ST 2X9m41),
Ll[ A(ABx3n, P22n) A(ABX2n, Q%ont1)

2|+ (Pxon, ST Xon+1)A(ST %2041, Q% 2n41)

\_T_J

Using (2.1), we have
[1+ Ad(Yon—1,%20)14* (Yon Y2n+1)
1[ A*(Yon-1, Y20) 4 (Y2n Yon+1)
< hmax{ 21+d*(Yon Yon+1) d(Yon—1, Y2n) 1’ l
A(Yan-1,Y20) A Y2n-1, Y2n11) A (Y2n Y2n)
d(’.’a"Zn—l: y’2n+1)d(’y’2n' ’y‘Zn)d(’y*an ’y’2n+1)

+0 (Yan-1, %am) — 0(¢ Yan-1,%2n)),
A*(Yon-1,Y2n)r A Yon-1, %20) A (Y2n Y2n+1)s
A(Yan-1, Yan+1) A Y2n Y2n),
1 [d(ywl—l:’y’Zn)d(’y’Zn—lr’y’ZrHl)

2 +d(%2n' ’y’Zn)d(’y‘Zn' ’y’2n+1)
On using 75, = d(42n, Y2n+1) in the above inequality, we have

where o' (Yan-1, Y2n) = max

1
[1+ h4’2n—1]4”22n < fimax {E [”'zzn—1”"2n + 4”22n”"2n—1]' 0'0}

+o(Yan-1,%2n) — Q(”(%zn—l”y)zn))'
where  o(¢an—1, %2n) = max {”’22n—1,”’V2n—1””2n, 0,% [72n-14(Y2n-1, Yon+1) + 0]}
By using triangular inequality and property of @, we get
A(Yorn-1,Yon+1) < A Yon—1,%2n) + A Y2n Yons1)= T2n-1 + Ton
and ¢ (Yan-1,Y%2n) < 0'(x,4) = max {”"zzn—1””'2n—14"2n, 0'% [72n-1("2n—1 + 72), 0]}
If 5p_1 < 7%y , then Ard, < ArZ, — O{r2,}, a contradiction.
Therefore, 2, < r£,_,impliesry, < 75,_1.

In a similar way, if n is odd, then we can obtainry, ., < 75,.
It follows that the sequence {7,} is decreasing.
Let lim 7+, = m, for some m > 0.

n—->oo

Suppose m > 0; then from inequality (Cs), we have

[1 + hd(ﬂBxZn: 5:715'6271+1)]d2 (?xZn' Qx2n+1)
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1 A (ABxyn, P2on)A(ST %an 41, Q%an41)
21+d* (ST %on41, Q% on+1) A (ABxon, Pxoy)]’
A(ABxon, Pxon)A(ABXoy, QX2 11) A(PXon, ST Xopn41),
A(ABX2p, Q%20 41)A(PXon, ST %2141)A(ST X211, Q% 2n41)
0 (ABx2n, ST xon11) — O{o(ABx2n, ST x2n11)}
A* (ABxyn, ST X3 11),
A(ABx2p, Px2n)A(ST X241, Q%2n11),
whereo (ABxyy,, ST X9p41) = Max A(ABxXoy, QXopns1)A(P X0, ST X590 41),
1 A(ABx3n, P22n) A(ABX2y, Q%an41)
2|+ (Pxon, ST Xon41)A(ST X2n41, Q%2 41)
Now by using triangular inequality and property of @ and taking limit n — oo, we get
[1+ Am]m? < Am?® + m? — @(m?). Then @(m?) < 0, since m is positive, then by property of
@, we get m = 0. Therefore, we conclude thatrlli_r)go Vop = rlll_r& AW Yons1) = m = 0.

< /A max

Now we show that {¢,} is a Cauchy sequence. Suppose that {¢,} is not a Cauchy sequence. For
given € > 0, we can find two sequences of positive integers {m(k)} and {n(k)} such that for all
positive integers k , n(k) > m(k) > k.

A Ymk)y Yn) Z € A(Ymu) Ynt-1) < €

Now € < d(Yma) ¥nto) < A(Ymay Ynwr-1) + d(Ynto-1 Yni))

Letting k — oo, we get %Lrglod(ym(k),yn(k)) =€

Now from the triangular inequality, we have,

| A (% Ymao+1) = A(Pmae ¥nio)| < A Ymuo Ymio+1)-
Taking limits as k — oo we have lim A(Yn() Ymay+1) = €.

On using triangular inequality, we have

| (Ymaaey Ynio+1) — A Hmay Ynwo)| S A(Ynty Ynio+1)-
Proceeding limits as k — oo we get Ilim d,(ym(k),yn(k)ﬂ) = €.

Similarly, we have
|2 (Ymaoy+1 Ynio+1) — A Gmaoy Ynio)| < E(Ymaey Ymio+1) + A(Yn) Ynio+1)-

Taking limit as k — oo in the above inequality, we havellim A(Ynt+1 Ymao+1) = €
On putting x = Xy and 4 = 2y In (Cs), we get

[1 + /Ld(cﬂme(k), STxn(k))]dz (.'me(k), an(k))
<

1| @H(ABxmiy, P Xm0 ) A (ST %y Qi)
2| +d?(ST Xngy, Q%)) A(ABZmaiey, PXmaoy)|
A(ABXm ey, PEm(i) ) A (ABXm(x), Q%n(w) ) A(PEmey, ST %n(i),
A(ABE (i, Qi) ) (P2masy ST % (i) ) (ST %niacy Qi)
o (ABLm iy, ST 1)) — D{ 0 (ABXm iy, ST (1)) },
( A (ABL iy, ST Zn (i) )
A(ABEm(k) PEm(w)) (ST Zniey, Qi ),
whereo (ABxme), ST xna)) = maxs  d(ABXp), Q%n(i)) (P Zmaey ST Xngie))»
1 [A(ABZm e, P2y ) A (ABXm ey, Qi)
2 L+ (P2, ST %n a0 )4 (ST n iy Qnci ) 1)

A max

~"
-

Using (2.5) we obtain
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[1+ 2d(Ym)-1 Yn-1)]4* (Ymo Ynii))
1 @ (Hmao-1 #mw0) 4 (Hnw-1 Ynw)
2 |+ d(Ymi0-1 Ymw))A* (Ynwo-1 Ynio)l
A(Ym(t)-1 Ym()) A Ym -1 Y0 )4 (Ymw) Ynti-1),
A( Y -1 Yni0) A Pmaey Yo -1) A (Ynio -1, Ynao))

< A max

+0 (Ym)-1 Ynti)-1) = W0 (Ymao -1 Yno-1) 1
( A*(Ymao -1 Ynlo-1); )
A( Ym0 -1, Ym0) (Yo -1 %))
where  o(Ymao-1, Yno-1) = max{  A(Yma-1.Yn0)d(Yma ¥nw-1), |-

1 [d(/y’m(k)—ll Ym) A (Ym@w)-1 Ynw)
2 |+ (Ymo Yno-1) 4 (Yo -1, Yn) |
Letting k — oo, we get[1 + Ae]e? < Amax {% [0+ 0], 0,0} + €2 — @(e?)
= €2 — ¢(e?), a contradiction. Thus {¢,} is a Cauchy sequence in 2.
Case 1. ST () is complete. In this case {¢,,} = {8Tx,,4+1} isa Cauchy sequence in ST (2), which
is complete then the sequence {y,,} converges to a some point z € ST (A). Consequently, the
subsequence’s {Qx5, 41} {ABx, ) {8T 25,41} and {Px,,,} also converges to the same point z. As
z € ST (), there exists « € A such that z = STwu.
Now we claim that z = Q. For this puttingx = x,, and 4 = « in (Cs), we get
[1+ Ad(ABxy,, STu)]d?(Pxy,, Ou)
11 d?(ABxyy, Pxyy)d (ST, Qu)
2 [+d2(5Tu, Qu) A (ABx sy, Pryy)l
A(ABxyy, Pxon)A(ABxy,, Qu)A(Pxy,, STw),
A(ABxyy, Qu)A(Pxyy, STu)A(STu, Qu)
+0(ABxyy, STu) — O{0(ABxy,, STu)} ,where o (ABxyy,, STu) =
A2 (ABxyp, STW),
A(ABxyy, Pxon)A(STu, Qu),

max A(ABxyy, Qu)A(Pxyy, STu),

1 [d(ABxyy, Pxon)A(ABxyy, Qu)

2| +d(Pxyy, STUW)A(STu, Qu)
Taking limit as n — oo, we have

< /A max

11 d?(z,2)d(z,Qu)

21+d%(z,0u)d(z,2)]’
d(z,z)d(z,Qu)d(z,3),
ad(z,Qu)d(z,z)d(z,Qu)

[1+ 4d(z,2)]d%(3,Qu) < A max

+0(z,2) — 0{o(z,2)}
d*(z,2),
d(z,2)d(z,0u),
whereo(z,z3) = max d(z,0u)d(z,3), =0.
1[ d(3,2)d(z,Qu)
2|+d(z,z)d(z,Qu)
Therefore, we get

1[O+O]
2 )

0,
0

d?(z,0u) < Amax + 0 — @(0).
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Thus we get 7 = Qu. Hence z = Qu = §Tu. Since (Q,87") are weakly compatible, so we have
0z = 8T z.Next, we will show that Tz = z. For this putting For this putting x = x,, and ¢ = Tu« In
(Cs), we get
[1 4+ Ad(ABxyn, STT 1) d?*(Pxyy, QT 1)

1 [ d?(ABxyy, Pxyn)A(STTu, QT 1)
2 1+d?*(8TTu, QTu)d(ABxyy, Pxon)l’
A(ABxyy, Pxon)A(ABxyy, QTU)A(Pxyy, STT1L),
A(ABxyy, QTU)A(P x5y, STTUW)A(STTu, QT 1)
+0(ABxyp, STTU) — Q{0 (ABxyy, STT1)} ,Where 0 (ABxyy,, STTU) =
d?(ABxy,, STTw),
A(ABxyy, Pxoy)A(STTu, QT 1),
maxs d(ABxy,, QTu)d(Pxy,, STTw),
1 [d(ABxyn, Pxon)A(ABxyy,, QT 1)
2| +d(Pxyy, STTUWA(STT 7, 0T 1)
Taking limitas n — oo, we have and QT =T7Q gives QTu =TQu = T3 (3 = Qu)
ST =TS imply ST (Tw) = TS(Tw) = T(STw) = Tz.
[1+ Ad(z,T3)]d?*(3,T2)

< A max

11 d%*(2,2)d(T2,T3)
21+d*(Tz,T2)d(z,2)]’ 1

SAMAXY o DAz T (5,T),
Ad(z,T2)d(z,Tz)d(Tz, Tz)}
+0(2,Tz) — 0{o(3,T3)},
( d%(z,Tz), \
d(z,2)d(Tz,Tz),
whereo (z,T3z) = max d(z,Tz)d(z,T3), =d?*(z,T3).
Ll[ d(z,2)d(z,T2) J
2|+d(3,T72)d(T3,T3)
Therefore, we get

1
=10+ 0],
5[0+0]

[1+ 2d(z,T2)|d*(z,Tz) < Amax +d*(z,73) — 0(d%(z,T3)).

)

0
i.e., d*(z,73z) < 0.Thus z = Tz.

Now 8Tz = Tz = zgimply §z = z.
Hence Sz =Tz = Qz = z.
As Q(A) € AB(N), there exists w € A such that z = Qz = ABwr.
Next, we will show that Pw = z. For this putting x = «w and ¢ = x4, in (Cs), we have
[1+ Ad(ABw, ST x5541)]d?* (Pw, Q%50 41)
11 d*(ABw, Pw)A(ST xon41, Q¥2n+1)

2 4+d? (ST %3n41, Q%2n41) A(ABw, Pur)l’
A(ABw, Pw)Ad(ABw, Qxp11)A(Pw, ST 25141),
A(ABw, Qxon11)A(Pw, ST 25041)A(ST %2141, Q%2 41)
+0(ABw, ST x9541) — D{o(ABw, ST 255,41)}

where

< A max

d?(ABw, ST %5p11),
A(ABw, Pw)A(ST %2011, Q%2n+1),
o (ABw, ST xp41) = max A(ABw, Qx9p41)A(Pw, ST X9pn41),
1 d(ABw, Puw)d(ABw,Qxspn41)
2 +d(j)w' 5Tx2n+1)d(5:rx2n+1' Qx2n+1)
Taking limit as n — oo, we have
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(1] d*(z Pw)d(z,2)
) 21+d?(3,z)d(z, Pw)]’
[1+ Ad(z,2)]d*(Pw,z) < A max id(z' Pur)d(a, Z)d(?w,z),f
d(z,z)d(Pw,z)d(z,3)
+0(3,3) — 0{c(3,2)},
{ d*(z,3), ]
d(z,Px)d(z,2),
whereo(z,z3) = max d(z,z3)d(Pw, z), = 0.
1[ d(z, Pw)d(z,z)
2 [+d (Pw,2)d(3,2)

N =

[0+ 0],

[1+ Ad(z,2)]d*(Pw,z) < Amax + 0 —0(0).

)

0
ie., d*(Pw,z) < 0. Thus Pw = z.
Since (P, AB) are weakly compatible, so P and AB commute their coincidence point w, then we
have Pz = ABz.
Next, we will show that Pz = z. For this putting x = z and ¢ = x,,,, In (Cs), we have
[1 + Ad(ABz, ST x2341)]1d* (P3, Q% 2p41)

1 [ A*(ABz, Pz)A(ST %2141, Q%20 +1) \
< hmaxi 214+d* (ST x2n41, Q%on11) A (ABz, Pz)]’ }
- A(ABz,Pz)A(ABZ, QxX2p4+1)A(PZ, 8T X9n41),
A(AB3Z, Q%2141)A(P3, ST %2141)A(ST X211, Q% 2n41)
+0(ABz, 8T x3n41) — {0 (ABz, ST x2n41)},
where
( d*(ABz, ST X2n41),
d(ABz, P2)A(ST %241, Q%2n+1),
0(AB3z,8T xX9p41) = max A(ABZ, Q%2 +1)A (P2, ST Xpn41),
1 [ d(ABz,Pz)A(ABZ,Q%2p+1)
2+d(P3, 8T 22n41)A(ST 22041, Q%20 41)

—

Taking limit as n — oo, we have
11 d*(Pz,Pz)d(z,3)
214+d*(z,2)d(Pz,Pz)]’
d(Pz,Pz)d(Pz,2)d(P3z,3),
d(Pz,2)d(Pz,2)d(z,2)

[1+ Ad(P3z,2)]|d?(Pz,2) < A max

+0(Pz,2) — 0{c(Pz,2)},
d?(Pz,z),
d(z,Pz)d(z,3),
whereo (Pz,z) = max<{ d(Pz,2)d(Pz,3),
1[d(Pz,Pz)d(Pz,z)
2| +d(Pz,2)d(z,3)

l[0 + 0]
[1+ Ad(Pz,2)]d*(P3z,3) < Amax? 2 0 N+ d2(Pz,2) — 0(d*(Pz, 7).

)

0
i.e., d?(P3,2z) < 0.Thus Pz = 3. Then Pz = ABz = z.
Next, we will show that Bz = 3. For this putting x = Bz and ¢ = x,,44 in (Cs), we have
[1+ Ad(ABBz,5T %5,411)]1d*(PBz,Q%5p11)
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1 [ a*(ABBz, PB2)A(ST %3n41, Q%2n4+1)

2 1+d?(ST %3941, Q%2n41)A(ABBz, PBz)I’
A(ABBz, PBz)A(ABBZ,Qx2p41)A(PB3, ST X9111),
A(ABBz, Qx3n1+1)A(PB3, ST %3n41)A(ST %3041, Q%2n11)
+0(ABB3, ST x3141) — D{0(ABB3, ST x9141)},

where

< fAmax

A2 (ABBz, ST %yn11),
d(ABBz, PB2)A(ST X2n41, Q%2n+1),
0(ABB3z, 8T x55,41) = max A(ABBz,Q%31+1)A(PBz, ST xX5141),
1 [ Ad(ABBz, PBz)Ad(ABBz,QxXpn41)
2+d(PBz, 8T %2141)A(ST %2041, Q%2n41)

Taking limitasn — o and PB = BP, AB = BA implies P(Bz) = B(Pz) = Bz and AB(Bz) =

B(AB)z = Bz

214+d?*(z,3)d(Bz,Bz)]’
d(Bz,Bz)d(Bz,3)d(Bz,3),
d(Bz,z)d(Bz,3)d(z,%) J

11 d*(Bz,Bz)d(z, )
[1+ Ad(Bz,2)]d?*(Bz,2) < A max l

+0(Bz,3) — 0{c(Bz,2)},
( d*(Bz, ), \
d(Bz,Bz)d(z,2),

whereo (Bz,z) = max<{ d(Bz,z)d(Bz,z), [ = d*(Bz,3z).
ll [d(Bz, Bz)d(Bz, 2) J
2| +d(Bz,32)d(z,2) 1
> [0 + 0],

0,

0
i.e., d%(Bz,3z) < 0.Thus Bz = z. Then z = ABz = Az. Therefore z = Bz = Az = Pz.

Hence in all we have 5 = Bz = Az = Pz =Sz = T3 = Qz.
Case Il. When P (2) is complete follows from above case as P () < ST ().

[1+ Ad(Bz,2)|d*(Bz,z) < Amax + d*(Bz,z) — 0(d?(Bz,3)).

Case I11. When AB() is complete. This case follows by symmetry. As Q() € AB(A), therefore

the result also holds when Q () is complete.

Uniqueness.Let 72 be another common fixed point of A,B,S,7,P and Q. Then m = Bm =

Am =Pm =8Sm =Tm = Qm.
Finally, we will show that z = . For this putting x = z and ¢ = m in (Cs), we have
[1+ Ad(ABz, STm)]d?*(Pz, Qm)

11 d*(ABz, Pz)d(STm,Qm)
214+d?(8Tm,Qm)d(ABz, Pz)l’
Ad(ABz,Pz)d(ABz, Qm)d(Pz, STm),
Ad(ABz, Qm)d(Pz, STm)d(STm,Qm)
+0(ABz, STm) — O{o(ABz, STm)},
d?(ABz,STm),
d(ABz,Pz)d(STm,Qm),
where ¢ (ABz,STm) = max Ad(ABz, Qm)d(Pz,STm),
1[ d(ABz,Pz)d(ABz,Qm)
2| +d(Pz, STmM)A(STm,Qm)
11 d?(z, z)d(m, m)
21+d?(m,m)d(z,z)l’
a(z,z)d(z3,m)d(z,m),
a(z, m)d(z, m)d(m, m)

< AAmax

[1+ Ad(z,m)]d?*(z,m) < A max
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+0(z,m) — 0{o(z,m)},

( d*(z,m), ]
a(z,z)d(m,m),
whereo (z,m) = max d(z, m)d(z,m), = d?*(z,m).
l[ d(z,2)d(z,m) |
2[+d(z, m)d(m,m)]
E [0 + 0],
[1+ Ad(z,m)]d?(z,m) < Amax< 2 0 + d?(z,m) — 0(d?(z,m)).
\ 0

i.e., d*(z,m) < 0. Thus z = m. Hence z be a unique common fixed point of A, B,S,T,P and Q.

Corollary2.1 Let A,B,S,T,P and Q be six self-mappings of metric space (U,4) satisfying
(C1),(C,),(C3),(C,) and the following condition:
(Ce) d*(Px,9y) < 0(ABx,STy) — 0{c(ABx,STy)}
d*(ABx,STy),
Ad(ABx,Px)d(STy,Qy),
whereo (ABx, STy) = maxs d(ABx, Qu)d(Px,STy),
1[d(ABx, Px)d(ABx, Qy)
2 [+d(.’Px, STy)A(STy, Qy)
for all x, 4 € and @: [0, ©) — [0, ) is a continuous function with @(¢) =0 &£ =0and @(£) > ¢,
for each £ > 0.Then A, B, S, T, P and Q have a unique common fixed point in 2.
Proof.£ =0 in Theorem 2.1, we have the result.
In the Theorem 2.1, if we take T = B = Q = I (Identity mapping), the we have the following
corollary
Corollary 2.2Let A, S, P be three self-mappings of metric space (2, &) satisfying (C;),(C3),(C,) and
the following condition:
11 d?(Ax, Px)d(Sy,y)
21+a?(Sy, y)d(Ax, Px))’
Ad(Ax,Px)d(Ax,y)d(Px,Sy),
(ABx, y)d(Px,Sy)d(Sy, 4)

[1+ Ad(Ax,Sy)]d?(Px,Qy) < A max

+o(Ax, Sy) — 0{o(Ax,Sy)},
d?(Ax, Sy),
A(Ax,Px)d(Sy,u),

whereo (Ax, Sy) = max{ d(Ax,4)d(Px,Sy),

1[d(Ax, Px)d(Ax,y)

2| +d(Px, Sy)d(Sy, ¢)
forall x,4 € A, A = 0 isareal number and @: [0, ) — [0, ) is a continuous function with
P(t)=0st=0and @(¢t) > 0, foreach £ > 0.Then A, §, Phave a uniqgue common fixed point in 2L.
In the Theorem 2.1, if we take 7 = B = I (Identity mapping), the we have the following corollary

Corollary2.3 Let A,5,P and Q be four self-mappings of metric space (U, d) satisfying
(€y),(Cy), (C3),(C,) and the following condition:
[1+ Ad(Ax,Sy)]d?(Px,Qy)

1[ d?(Ax, Px)d(Sy, Qy)
2|+d%(Sy, Qy)d(Ax, Px)]’
Ad(Ax,Px)d(Ax, Qu)d(Px,Sy),
a(Ax,Qy)d(Px,Sy)d(Sy, Qy)

< /A max

+ o (Ax,Sy) — O{o(Ax,Sy)},
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d?(Ax,Sy),
d(Ax, Px)d(Sy, Qy),

whereo (Ax, Sy) = max{ d(Ax,Qu)d(Px,Sy), |,

1[d(Ax, Px)d(Ax, Qy)

21+d(Px, Sy)d(Sy, Qy)
forall x,4 € A, A > 0isareal number and @: [0, ) — [0, ) is a continuous function with
@(t) =01 =0 and @(¢) > t,for each £ > 0.Then A,S,P and Q have a unique common fixed
point in 2.
Proof. Taking 7 = B = I in Theorem 2.1, we have the result.
Example 2.1Let X = [0,1]and dbe a usual metric. Define the self mappings A, B,S,7,P and Q on X
by Px =0x =x/3 and Ax = Bx =8x =Tx =3x/4 and @: [0, ©) — [0, ©) is a continuous
function defined by @(¢) = /3 which satisfied @ (t) = 0 <t =0 and @(t) > 0 for each t > 0.
Taking < x,, >=< % >, it is clear that pairs (P, AB) and (Q, ST) are weakly compatible. Therefore,

all the condition of Theorem 2.1 are satisfied, then we can obtain S0 = 70 = A0 = B0 = P0 = Q0 =
0, sox = 0is a common fixed point of A,B,S,T,P and Q. In fact, x = 0 is the unique common
fixed point of A, B, S, T, P and Q.

Conclusion:
In this paper, we prove a common fixed point theorem for six self mapping using weakly compatible
mapping in a metric space. At the last we give corollaries and example in support of our theorem.
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